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Iv the second volume of his ‘Electricity and Magnetism’ Professor J. CLERK MAXWELL
has proposed a very remarkable electromagnetic theory of light, and has worked out
the results as far as the transmission of light through uniform crystalline and magnetic
media are concerned, leaving the questions of reflection and refraction untouched.
These, however, may be very conveniently studied from his point of view.

If we call W the electrostatic energy of the medium, it may be expressed in terms
of the electromotive force and the electric displacement at each point as is done in
Professor MaxweLL’s ¢ Electricity and Magnetism,” vol. ii., part iv., ch. 9. T shall
adopt his notation and call the electromotive force & and its components P, Q, R, and
the electric displacement ® and its components f; g, h.  As several of the results of
this paper admit of a very elegant expression in Quaternion notation I shall give the
work and results in both Cartesian and Quaternion form, confining the German letters
to the Quaternion notation. Between these quantities then we have the equation

W= —1(([86D.dudyde=13 ([ ®F-+Qy-+Rh)dadyd

Similarly the kinetic energy T may be expressed in terms of the magnetic induction,
¥, and the magnetic force, §, or their components ¢, b, ¢ and a, B, y by the equation

1

T= . f _( _(.SiB@.dmdydz: i ”[(aa+ bBcy)dadydz

I shall at present assume this to be a complete expression for T and return to the case
of magnetized media for separate treatment, as Professor MAXWELL has proposed addi-
tional terms in this case in order to account for their property of rotatory polarisation.
I shall throughout assume the media to be isotropic as regards magnetic induction, for
the contrary supposition would enormously complicate the question and be, besides, of
doubtful physical applicability. For the present I shall not assume them to be electro-
statically isotropic. Hence @ is a linear vector and self-conjugate function of ®, and
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692 MR. G. F. FITZGERALD ON THE ELECTROMAGNETIC THEORY

consequently P, Q, R linear functions of f; g, h, so that we may write in Quaternion
notation '

E=¢D
and if we call U the general symmetrical quadratic function of f, ¢, h we may assume

U=Pf4+Qg+RA

and consequently

W= [[s2¢D.dedyde=4 [ [Udedyd

As the medium is magnetically isotropic we have
B=ph or a=pa, b=pB, c=py

where p is the coefficient of magnetic inductive capacity, and consequently the electro-

kinetic energy may be written

T=— é%— ”f&fpz dxdydz= g'u; [ ‘( J‘ (@ + B+ dadydz
Now I shall assume the mediums to be nonconductors, and although this limits to
some extent the applicability of my results, and notably their relation to metallic

reflection, yet it is a necessity, for otherwise the problem would be beyond my present

dx

powers of solution. With this assumption, and using NEWTON’S notation of a for o

we have the following equations (see ‘Elect. and Mag.,” vol. ii., § 619)

47T®=VV@

using v for the operation
d  .d a

Lt gyth,

or the same in terms of its components, namely,

_dy_ B
47Tf_dg/—d4
« da  dy
4Wg—dz—dw
s d d
4wh——@-——oj

Tdx dy
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Assuming now a quantity & with components £, n, {, such that

= f Hat
and consequently ,

R=9
or in terms of the components . . .

§=o, n=R, =y
we may evidently write
ArD=VVR
e, .
4 f_@‘_d” _‘lzg__‘g h_@_‘ﬁg‘

Tdr de’ "™ T da dy

so that we have

W=— o [[[S(7v %4V v ®)dudyds

T=— L ([ [edudydi= L [([ @32+ B) dndyde

LAGRANGE'S equations of motion may often be very conveniently represented as the

conditions that I(T—W)dt should be a minimum, or in other words that
8[ (T —W)de=
and this method, from its symmetry, is particularly applicable to the methods of

Quaternions.
Proceeding on this method we obtain immediately the equation

0=—| M [[stist.dadydz— [ [[s(7 v s0.47v St)dxdydz}dt

or in Cartesian notation
PREL SRS e dU au dUu
o=|| £ [ [ éoé-+nvn+ tobydwayde—3 [[(7 07+ 89+ 5580 dwdyds Y

Now we may evidently integrate the terms in SH and &, Sn, 8L with reference to the
time, and the terms depending on the limits of the time must vanish separately,
and we are not at present concerned with them, so that the equation reduces to

f j J’ f [y8ﬁ8m+11;r—s(vv MR.PVVv m)]dacdydzdtz 0

or

”H[ (€8€+7)877+§8Z)+1< 3f+‘ dg +dh 8’&)_‘ dadydzdt=0
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694 MR. G. F. FITZGERALD ON THE ELECTROMAGNETIC THEORY

I shall now proceed to integrate this by parts relatively to x, y, %, and in order to
express the result conveniently I shall assume ds to be an element of the surface of
the medium and N, with components I, m, 7, to be a unit normal to this element of
surface, when we evidently obtain

IE,; [[se.7v momds-+([[{usiion+ S(V v 67w w.0) | dudyds | ar=

or
[ [ [[@Et-ndn+750) ducdydz )
|l S-S e e (1= o 4

N

It is evident that the superficial and general integrals must vanish separately, and
as 8N or 8¢, n and 8¢, is arbitrary in the general integrals, we must evidently have

drpR+ VvV ¢V v R=0
or

ddU d du
"f+2<deh dzdg>

ddU ddU
B _
I”’7+ <dz df Rz dh> 0

ddU _ ddU
1
HH i )=

As it will not take long I will deduce the ordinary equations for the transmission of
plane-waves from these before proceeding to discuss the superficial condition. In the
first place, as our axes of coordinates are perfectly arbitrary I shall assume z to be
normal to the plane of the wave, and consequently & %, { to be functions of z and ¢

only, so that v =7c—;l; and [_ch: 4%/: 0, and consequently {=0 and A=0 and
M .dE
Vv R=i- o
so that if
bp=ASip+uSjp+Skp

d d
qSVV?R—,U«——&:— &-Z-

and consequently
L= Vi, df — VALY ”’
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Now if we had originally assumed

U=Af?+Bg*+Ch*4-2F.gh+2G.hf+2H.fy
we should have
A=Ai+Hj+Gk, p=He+Bj+Fk
so that we obtain
el [ BRE A\ L P i
(4774 +i (B —HLTD) 4 (A T2 - T E)=0

¢

so that if we assume 7 and j parallel to the axes of the section of Spp=1 by the wave-

plane we evidently have got H=0, and consequently {=0 and

" 2
4mpuE=B.2%,
and as A and B are inversely proportional to the squares of the axes of the section of
Sppp=1 or U=1 by the wave-plane, we get M’CULLAGH’S result that each component
in these directions is propagated independently and with a velocity inversely propor-
tional to the perpendicular axis of the section of Spdp=1 by the wave-plane.

This comes out at once from the Cartesian equations, for as A=0, U reduces to

U=Af+2H.fy+Bg*
and by choosing # and y parallel to the axes of this section, we have H=0, so that

AU au

a,nq'l daf= ——% and 4719:%5
and the result of putting these in is evidently the same as before.

Returning now to the superficial conditions, I shall follow M’CuLLAGH, and assume
that at each point of the surface of separation of two media the values of the elements
of the integrals must be equal for the two media, and, indeed, I think it is pretty
evident that if the original integrals are to express the whole state of affairs in the
case of a motion propagated from one medium into another, the superficial integrals
must vanish when the limits introduced in them are the functions corresponding to
the two contiguous media.

Using the suffix ; for one medium and | for the other, and assuming the normal to
the surface as £, we get, as 8R is evidently arbitrary and the same for both media at
the surface of separation, '

~Vid Vv R=VEkdp, VvV R
4 v 2
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or the two equations

Sig Vv R=Si, Vv R
Sid, Vv R=Sj, Vv R

which are the same as can be got at once by putting /=1 m=n=0 in the Cartesian
superficial equations, and taking 8¢ and 8y as arbitrary and independent, when we get

dU dU dU dU

AP dp T dg

If now we assume that the axis of « is the line of intersection of the plane of
incidence and the surface, we may evidently assume R, to be the resultant of an
incident and reflected ray, and R, to be the resultant of the two refracted rays, so
that we may write

Ro=Jmot7 om0 Ji=jm +7'm

when j, 7', 1, J', are respectively unitvectors parallel to the direction of magnetic dis-
placement in the incident, reflected and each refracted ray. Similarly calling &y, &y,
k,, k', the unitvectors normal to these wave-planes, and z, %, 2, #; the variable distance

. d , , d .
along these, evidently we may assume VO:kOZZ:Z’ V'o=FKo57> &c., and substituting
0 v 0

these we at once obtain

Dy i i 4 Mo qay o _Iqey o0 I gy

dzo'sz%%_l_ dz,o.S@qﬁO@ 0= dzl.quSlzl+ dz’l'Sui)lzl

Ny qer v g ey v A ey oy AN ey o

gz‘s- Y ¢ozo+‘d?z- Yot o= d’;I Ybii +$/11-SJ bit'y

In these I shall now assume ¢y=1 as it is convenient to suppose this medium to be

isotropic and the velocity of propagation in it unity, and ¢, and ¢, are the directions

in the wave-plane perpendicular to the magnetic displacement ; so that if «; B, v,
o'y, B'os 7o be the direction angles of these lines referred to the superficial axes

Sichgty=c0s &g, Sipgi’s=cos &'y, Fepgig=rcos By, Fpgi';=cos B,

and if s7! be that axis of the section of Sppp=1 by one of the refracted wave-planes
which is perpendicular to the direction of magnetic displacement, it is evidently the
velocity of propagation of this wave in this medium, and we may write

4, =Us=s"LTs.". ¢pt,=¢s L. Ts=Ts
when v~ is the perpendicular on the corresponding tangent plane, and consequently

St =TvTs. cos &,
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when «, is the angle between v and the axis of x, and evidently Ts represents the
velocity of this wave, while Vuj is the direction of the ray. Hence our equations may
be written

s 'y , 'y

. d
€08 oty t-cos o . 0—Tp.Ts. cos o, -2 +Ty'Ts. cos a’
Odzo Od 1 d 1 dz /

cos ,80 T —L1 cos ,8’ 07 =Tv.Ts. cos B, dnl+Tv'Ts cos B'1=5 dZ’l

These may be readily deduced from the Cartesian equations as follows: U, being
isotropic it can be written =Ay(fi*+9,°+%,%), and is evidently unaltered by trans-
formation, and if 7 :m : nand [, : m; : n, be the direction cosines of x and y to any
arbitrary axis, we get

dU, | dU, | dU,

Aa]‘})_l (o +n
al

AOgO_Zl df mljgl+”1'0‘lh—l

and now, as these are linear, we may suppose the superficial disturbance in one medium
to be due to an incident and reflected wave, and in the other to two refracted rays, so
that we can write these as

Aok ) =g (LG )

, dU daU dU auv, dU’ au’
Aolgrtg o= (Wt S (1 0t B0t B0

ldf ldf

and as U, and U’, are supposed to be referred to arbitrary axes, we may suppose U,
to be referred to such that 7, is the only component—a.e., to such that the direction of
the magnetic force is the axis of y, that of z being normal to the wave-plane, and
similarly ", being the only component in U’; while the 2 axis in this case is normal to
its wave-plane, and of course this », will be a function of z, only and %, of 2, only,
these being the corresponding ordinates. We thus obtain

’

d
dmfi= _dlzI daf’ = —

$=91=lh=h,=0
so that

dU 7 ’ I4
Af @T—A1f’1 dg 1f1 dy —Hlfl dl Glfl df/ =0/
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and the equations become

Ay(fotf )= (ZA1+mH1+“G1> +(Z/A/ +m '’ +n'G’ d”h

Ao(go+9 0)= A H+m H +0,G ) i +<l/ Al m/ \H 0 G,)dnl

Now if we consider A}, H,, &} we see that they are proportional to the direction
cosines of the perpendicular on the tangent plane to U where it is met by g=0, A=0
—t.e,, it is the direction conjugate to the electric displacement corresponding to 7,
Now if we call Ays the velocity of propagation of this wave and Ays’ of the other, we
see at once that s~ is an axis of the section of U=a constant by one wave-plane,
and "~ is an axis of the section by the other wave-plane, and if v~! and "~ be the
corresponding conjugate directions, and «, and &', 8, and B’; the angles between these
latter and the superficial « and y axes, and if «,, 8, &), 8/; be the corresponding angles
between 7, and %’; and these same superficial axes, we get exactly the same equations
as before, and write

dng dn'y ’ dmy ‘o , dn'y

—— .COS & .COS Oy =VS.CO8 0y 7 VS8 .COS Q| 5

dz, O+dz’0 0 Vdz, + Lay,

dny d’7/0 ’ day ‘ol , dn'y
. COos . COS =8 . COoS = TVS§ .COS o

dzo BO+d /0 BO ﬁl dzl + 1 dz/l

In order to reduce these further we assume

2m 2m /
0
v o
n=T, cos (st—zl) 7, =T, 1 C08 - T(st—2))

and if our superficial axes are so placed that the axis of x is the intersection of the
plane of incidence and the surface, and if 4y, 7', ¢}, ¢, be the angles the respective wave
normals make with the normal to the surface, we evidently may write

2y=7% COS 1+ sin ¢ 7 y=zcos ¢ 42 sin ¢’

m=zcosi,twsing 2 ,=zcost Fzsin?,

as it is easy to convince oneself that any terms involving y would be inadmissible, as
they could not by hypothesis occur in z, and the terms involving the time could not
vanish out of our equations if they occurred in the others. Hence these wave normals
are all in the same plane. When z=0 our equations must evidently be true inde-
pendently of the time and w, from which we see that no change of phase is possible in
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reflection. Hence these equations cannot explain metallic reflection. Indeed, this
question of change of phase seems to be one of a higher order than I am here dealing
with, and requires a discussion of the nature of the transition from one medium to
another, which, of course, cannot be abrupt, as our equations suppose, nor indeed
probably, in these cases, even very small compared with the vibrations. In order that
these terms involving the time should disappear from the equations when z=0 we
must have

4

Nt Ng:iA N ising :siney:sing 1sine; 111 :1:s:s

which involves that the angle of incidence should be equal to the angle of reflection ;
and if the second medium were an ordinary one, so that s=-=s" we should have that

the ratio of the sines of the angles of incidence and refraction was constant. Putting
in these values, our equations reduce to

T, cos ay+T', cos a’y=2T, cos a,+v"T’; cos a’;
T, cos By+T', cos B/y=2T, cos B,+v"T, cos B

together with the condition that when =0 the superficial displacements should be the
same to whichever medium they belong, namely,

E=¢, =y, {={

As each of these is a resolved part of the vibrations 7, y’y and n,, ", we get three
additional equations, the last of which, however, is the same as the second of the
former ones and there result, consequently, but four equations from which the four
quantities, namely, the three intensities Ty, T, T',, and the azimuth of T'; are to be
determined. It is remarkable that whether we assumed or no that {={ it is here
introduced. That is, however, no proof that it is wrong to omit it, as in FRESNEL’s
method of obtaining the intensities of the reflected and refracted rays, for the fact of
its turning up independently shows that there is something at least debateable about
it, and as I shall have cause to omit this equation as leading to inconvenient results in
a subsequent part of my paper, I thought it well to mention that there is something
curious about it even here. These equations are those long ago given by M'CurrAcH
in the ‘Transactions of the Royal Irish Academy,’” vol. xxi., to solve the problem of
crystalline reflection and refraction, and from which he deduces his beautiful theorem of
the polar plane and thus marvellously simplifies an extremely complicated problem.
Indeed, as the forms into which I have thrown T and W are identical with his
expressions for what are practically the same quantities, my whole investigation so far
is but a modification of his. In the simple case of the second medium being also
isotropic we have that v=1"=s=y¢’, and if we in the first place suppose 7, to be in the
plane of incidence, we have at once «;=90°, and consequently a’y=a'=90°, and T",
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vanishes, or at least may be supposed to do so, the medium being isotropic and s=¢’,
so that the two refracted waves coincide. Also B,=0 and B';=8,=0 likewise, as can
easily be seen by assuming that the reflected and refracted waves have components out
of the plane of incidence and then trying to satisfy the equations. Hence our equa-
tions reduce to

’ 1
To+T = ETl
and &=¢’, becomes
(Ty—T) sine=T, cos r

¢ being the angle of incidence and r of reflection. The first of these is

(To+T) sin ¢=T, sin »
and solving them we get

Ty=—

sin (1—») _ sin 27

Osin (i+7) 17 "0 gin (i47)

If 5, be perpendicular to the plane of incidence we obtain a;=% B,=0, and our
equations become

To+T'0="T,
and
(Ty—"T"y) sin ¢ cos ¢="T), sin 7 cos »
which give ’
T — 1 tan (1 —7) . sin 24
0 0 tan (¢ +7) = "0sin (¢ +7) cos (¢—7)

Having now deduced the already known laws of reflection and refraction of light at
crystalline and ordinary surfaces, I shall proceed to consider the case that Mr KErr’s
wonderfully beautiful experiments have made so interesting—namely, the case of
reflection from magnetic surfaces. In order to do this I shall assume, with Professor
J. CLerk MAXWELL (see ‘ Electricity and Magnetism,” vol. ii., § 824), that the kinetic
energy of the medium contains a term depending on the displacement of certain
supposed vortices, and that it may be expressed by an equation of the form (§ 826)

=—cf[[ s(‘%* Vv %)dwdydz: 4[| <jll—§ yascy g‘+§l§k>dxdydz

where :
d d d d
a0 a‘%-l—ﬂ @4_7&;

and a, B, y are now the components of the vortex .
. . . . 4 .
I shall assume the medium to be isotropic, so that taking q5=fw the electrostatic

energy of the medium may be expressed as

* When p is the refractive index.
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W= [[[(79 0. dedya

L [[(T/dE dn\e, (dE AL\, [dn dE
“"'SWKI ” {:(dg/ d> +<dz dw) +<das d J> ]d”dydz
While the complete value of T is

T=—2 || ﬁ m2+swos< VV§R>.Idacolydz

=g [t m {5 (5= 4 ag =+ (12 )} v
Working as before, and obtaining our equations as the condition that
[r—w)ae
should be a minimum, we have to satisfy the equations

(1 [Msmsm+4ﬂos(€l§i‘ Vv m>+4w0b<‘“’* Vv 35e> S(TvRTY sm)}dxdydzdmo

or in Cartesian coordinates

p(EdE+n3n+I50) )
oo 56— )
(] i taisen) o
T
| -t

Now of course the terms depending on C are the only additional ones, and it will
be necessary to integrate them both relatively to the time and also relatively to 6.
The integration with respect to the time is easily performed as it merely consists in
removing the dot from one of the terms under the integral to the other and changing
the sign, so that, neglecting the terms depending on the limits of the time with which
we are not concerned, our equation becomes

[ M[p«swsm) —dnCS 2o m Vv i+ 47708( Vv SER>+ S(Vvavy 39%)] dadydzdt=0

MDCCCLXXX. 4 xX
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or in Cartesian coordinates

p(EBE+ndn+£50)
oSS -2 (-2
(T s wotctos-mpospor-smpedes sy L
el (=~ (=2 )

dn

d

+% )}

Integrating these now by parts relatively to @, 9, z, and calling :m : n the direction
cosines of ¢ the normal to the surface of separation, and al+ Bm~4yn=SMN=¢ when
M is the vortex whose components are a, B, y, we get

jU [ {s@w{v(&n.

+(1[ s.{(,LmswovV‘%h%Vvva) 89%}dmdydz}dt=0

oy d8§> <

dz~ dy

AR

d9>—e.Vv§R}+~Il§V(§R.VV m)]séfe}ds

or in Cartesian coordinates

~

¢ dy

dz

)

(-8

’l

dn _dE
de dy

dg _dn
dy dz

e 1
e

K

déf d'r)

—47C f [ (la+m,3+n7){< dy @

+ [ j .“ ® (.58‘54';7.8’7 +-Z'3Z)olacoly0lz
+87TOHHE‘Z€<§_§_ dn) E+d /(ZE g

a5

1

+L ag _dt

T dx

d& _d¢
dz  dx

+Lalas =2 =y

SJer(f=E o

=~
2k _dt

-

)}
ot

+4n0 ({5, (g —m )86+ 1 (L—nd).Sn+ (mé—13) 8} s

dy _ dE
dy

)31;} ds

dx

>8 —|— <d77 df—>8§}dwdydz

o ool =i

=il )
<§§ EZZZ)] SC}dmolyolz

L dt=0

-/
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I shall not consider the general equations of wave propagation in the Cartesian form
as they are the same as those given by MAXWELL in a more general form, for he
assumes that the static energy of the medium is expressed more generally than I have
assumed, but as the Quaternion investigation is not long I shall give it.

The equation of motion is

. aR 1
pR+87CV v @+KVVVV R=0

and if z be the normal to a wave-plane, we may evidently assume V=k§z, and as N is

in the wave-plane we have

=0z sin %?(vt—z)-l—bj cos g5?(1;15—z)

a d
and as . =y_ our equation becomes

pR=4-87Cy. de e

+ Vk—
Substituting for N, and equating the coeflicients of ¢ and j separately to zero, we get

2
L6m Cv.b'v—%z 0, buv*—

6mCy b,

2
o 7

from which it is easy to see that a=-b and that v is determined by the equation

16m°Cy 1
N ’U—K—O

v
which gives of course two different values of v, one for each circularly polarised ray,
or disregarding the solutions for waves going in the negative direction, we have
approximately

1 87*Cey 1 8m?Cry
UV TR T W

and of course C can easily be determined from these by observing the rotation
produced, but there is nothing except experiment to prove that C may not be a
function of \, as we know K to be, to some extent at least; so that using these formulee
in order to obtain the laws of dispersion of rotatory polarisation seems to approach
towards deducing the known from the unknown. All we can be sure of is that C is
in general extremely minute.

4 x 2
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Returning to the superficial equations, and using / as a sign of substitution, we get
/ EVERTY m)+4ﬂo<vm‘§5—eva>=

As T intend only to work out the results in Cartesian coordinates, I shall confine
myself to them, and for simplification assume the axes to be z normal to and « and y
in the surface, and consequently l=m=0, n=1, and e=y. C may also be supposed
to vanish for one of the media for which K, is the dielectric inductive capacity. I
shall also assume that 6{=0 as the vanishing of its coefficient leads to inconvenient
results, and the assumption may be to some extent justified by considering that as
these 8¢, 8y, 6 are superficial values, no virtual displacement out of the surface, as
this would be, is admissible. From the other two, 8¢ and 87, we evidently get

(= ) =Rl snn{ -2

L2\ _L (9 g\, U _dE
Kl<dg/_rlzl> K<dg/ (;7>+4 O +4 Cy <(Z* dx)

A remarkable point about these equations is that they admit of being integrated
with regard to the time as far as their right-hand members are concerned, so that in
addition to the values which satisfy them as they stand, and which are the only ones
of much interest, there are other periodic values of &, %, { independently of &, 7, §
which satisfy these superficial conditions, and which may consequently be looked upon
as a sort of free vibration of the surface of the medium. But even if this could be
propagated into the rest of the ether it is improbable that the resultant vibrations
would be of such a period as to be visible, though some energy might be expended
on them.

I shall now further assume that the axis of « is the intersection of the surface with
the plane of incidence of a plane-wave, and that consequently none of my quantities
are functions of v, which reduces these equations to

(=)=l =) ()

Ay 1dy dg | (dE dE
1“{}}7; K dz 40{ +<n’z dac>}

In order still further to simplify the problem I shall now consider separately the
cases in which the magnetisation of the medium is normal and that in which it is
in the surface. In the first place, it is evident that if it were all in ¥ we should
have a=y=0, B=M, and the coefficient of C would vanish in both equations because
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é%: smc—%, and hence we get Mr. KERR's result (‘ Phil. Mag.,” March, 1878, p. 174) that

when the plane of incidence is normal to the lines of magnetic force the magnetising
of the mirror produces no change in the reflected light.
Assuming, then, first that the magnetisation is normal to the surface, we have

a=B=0, y=M, and 5%: SJE%, so that calling 47CK,IM=v our equations become

o6, _db_Ky(dg_de\ i )

7121_ (—l;cl_ Kl<dz _dx>+ zydz' M
i Kt
de~ K'dz dz dz) )

while if it be all in x—q.e,, in the intersection of the plane of incidence and the
surface, a=M, B=y=0, and ;;—%:9)2{%, so that our equations are

g, dg_ K (dE_dt 40

dz dz K\de dx dm

@l K dy_ df |
TK'dz dq,J

(1)

I shall now proceed to solve these two systems of equations each for the two cases

of waves whose magnetic forces §, 7, { are first in the plane of incidence, and secondly
at right angles to it. From the forms of the equations it is evident that we cannot
assume either the reflected or refracted rays to be similarly polarised, but it is easy to
convince oneself that there can be no difference of phase introduced in this case any
more than in the former one of ordinary reflection, and, as I then remarked, it is
evidently a question of greater complication than to be capable of being deduced from
the simple assumption that the alteration of the nature of the medium in going from
one into another is abrupt. Until more is known of the nature and extent of this
change I fear we must be content with theories which only partially represents
the facts.

As before, I shall assume &, »,, {; to be due to the incident and reflected rays, while
& m, {are due to the refracted ray. The incident ray may be taken to depend upon

the angle
2mr . .
¢1=X—(t—-z oS 7— Sin 7)
1

calling the velocity in this medium unity and the reflected wave on

, 2 . .
¢ ]_=~——>:T(t—|—z CoSs 17— §in 7),
1
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as it is easy to see that for these to vanish from the equations when 2=0 we must
have the sines of the angles of incidence and reflection equal, while the refracted wave
must be taken to depend upon

D .
= T(st—z oS — §in 7)
1

) s 1 ginz sinv ..
and here we must have, as before, TN L = and this involves, as before, the
1 1

ordinary laws of refraction, as s is constant and in general
/\/ wK, K, 5 sin®

s= ==

wK pK gin%g

Taking then first the case of the magnetisation being all normal to the surface and the
incident displacements &, », { in the plane of incidence, we must evidently assume

& =a, cos 7 cos ¢, —b, cos © cos ¢’y E=acosr.cos ¢

=0, 8in ¢y n=csin ¢ - (4)
{i=—a,sinicos ;—0b,sin¢.sin¢’;  {=—a,;sinr.cos ¢

in order to satisfy the equations

g _da¢ _XK,/d¢ df dn
P e S VA T

B K a2~ I\“ T de

dz  dz

=& m=y

As it leads to inconsistent results I, in accordance with FRESNEL, omit the third
equation, {,={ Tt is not easy to justify this omission, I fear, and the result must do
50, as well as the consideration that probably if we had a better insight into the
nature of the change from one medium into another our equations would be so modified
as not to present these anomalies.

From the last equation it is manifest that

c=c,

and as v is very small it is obvious that ¢ will always be small, so that »n may be
omitted in the first equation. Putting in the values of & 7, {, &c, and remembering
that when z=0, ¢,=¢',=¢, these equations evidently reduce to
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(,40) sin i=" @ sin r
1

. . . 2rsy N ..
¢, . sin ¢ cos 1= —" ¢, . sin 7. cos 7'——i—a(1+ cos® ) sin ¢
!

(@,—0b)) cosi=a cos r

nd from these we must solve for a, b, and ¢ in terms of a,. However, ¢, the com-
ponent introduced at right angles to the original plane of vibration by reflection, is the
only one of much interest, though the alteration produced in the values of the reflected

component by assummg E to differ from unity are noteworthy Calling T the perlod

of vibration of the wave we are considering, we may put and if we call £ —=x,

A T’ "
we get for ¢ the equation

o= 4y (1<__‘-|:f_zos2 ) sin ¢ sin 27
1= %y (sin 21+ sin 2r)(sin 7 cos » +y cos ¢ sin 7)

which if y=1 reduces to
: 4y (1+ cos? ) sin® 4 cos %

A="Tp N gy (i+7).cos (1 —7)

In the second case, when the direction of the vibration of the incident ray is perpen-
dicular to the plane of incidence, we must evidently assume

& =—cy cos tsin ¢, é=ccosrsin¢
N, =a, cos ¢p;+b, cos §’, n=acos ¢ .. . . . (B
{i=—cysint.sin ¢} {=—csinr.sin ¢

and, as before, it is evident that ¢ is generally very small so that »€ and »{ may be
omitted, and our equations become

d_fl ag df ag
“dz  dx Kd,d T dr +2d4
dm__Xy dy
de” K dz
fl':f m=n

and when the values above are introduced into them we obtain

—¢; COS 1==C COS 7"
(a,—b,) sin ¢ cos t=ay . sin r cos 7
a,+b, =a
siny 4wy sindcosr

—C=—X" +"

sin ¢ cos 7
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Hence we get solving for ¢, in terms of «,

8y sin 2¢ sin® ¢ cos® 7
== . — . .
! T "~ sin 7(sin 2¢+x sin 2¢)(sin 4 cos 7+ sin 7 cos 1)

which when y=1 reduces to

4y sin 2¢ . sin? ¢ cos? 7
ey .
T “* sin 7 sin? (4+7) cos (—7)

01=_

Turning now to the case where the magnetisation is in the surface, I shall first
suppose the incident vibration to be in the plane of incidence, when we evidently
assume, as before, equations (A) for &, my, {, & 7, {, and these must satisfy the
equations (II), and in addition

=&  m=n

As before, we evidently get c=c,, and from the second equation of (II) see that ¢
must be small, as v is, and consequently we may omit vy in the first equation, and so
the first equation is the same as before, and we have

(@, 40b,) sin t=ay .sin 7
(a;—0b,) cos 1=a cos r

. . . 2y oy
€y 81 2 COS 2= —C X SIN 7. COS 7‘——1;—0& cos 7 .sin? ¢

which when solved for ¢; in terms of a, gives

4y sin 24 sin® ¢ cos »
T % (sin 2741y sin 27)(sin ¢ cos 7+ cos ¢ sin 7)

1=

which when y=1 reduces to

_ 2mv.q; sin2¢.sin*gcos v
a= T  sin®(i+7).cos (i—7)

Finally, supposing the incident vibration to be perpendicular to the plane of
incidence, we have &, 7, {, & %, { determined by the equation (B), which when
substituted in equations (II), neglecting »¢ as before on account of its smallness, give

471-1/00 sin 24 sin? ¢ cos 7
T “(sin 25+ sin 27)(sin ¢ cos 7+ cos ¢ sin r)

C)=

which when y=1 reduces to

o 2@@ sin 2¢.sin? 4. cosr
7 T T sin? (44-7) . cos (5—7)
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It is remarkable that in this case the two components introduced by reflection are
the same, whether the vibration be in, or perpendicular to, the plane of incidence.

Comparing this method of obtaining the effects of reflection from a magnetised
surface with that given by me in the ¢Proceedings of the Royal Society for 1876,
No. 176, it is to be observed that my equations (I) and (II) are unaltered if the signs
of v and 7 are both reversed together, or if those of » and & and { are all reversed,
showing that a circularly polarised ray in one direction is reflected according to the
same laws when the magnetisation is one way as the oppositely circularly polarised
ray would be if the magnetisation were reversed, and hence my former method of
dividing the incident plane polarised ray into two opposite circularly polarised ones,
each of which was reflected according to its own laws, is justified.

In comparing these expressions with the results of Mr. KErr’s admirable experiments,
it is necessary to observe, as I mentioned before, that the introduction of a difference
of phase between the reflected components is a question of a different order from that
here discussed, and probably to some extent at least depends on the want of abrupt-
ness in the change from one medium to the other. For instance, my expressions give
no change of plane of polarisation when light is reflected normally from the end of a
magnet, but they would lead one to expect that the only effect was a slight elliptic
polarisation, the major axis of the ellipse being in the same plane as the original plane
of polarisation. Now Mr. KERR’s experiments show that there is some rotation of this
plane by reflection, and a supposition similar to one long ago proposed to explain the
known elliptic polarisation of metallic reflection—namely, that the efficient reflecting
surface has some depth—may easily be shown to lead to Mr. KEr®’S result. On this
hypothesis the reflected ray is the resultant of the rays reflected from a small thick-
ness at the surface of separation of the media ; and in the case of normal reflection
from the end of the pole of a magnet, each of these components would be slightly
turned from its original plane of polarisation owing to having passed through a very
small thickness of a very powerful rotatory polarising substance—namely, this super-
ficial layer of the magnet—hence it is evident that their resultant would no longer be
polarised in the same plane as the incident ray. I only give this as an instance of
how this question of a difference of phase affects the results, and how the hypotheses
that have been framed to explain it might be used to bring my results into complete
accord with Mr. Kerr's experiments. I hardly think it worth while going into this
more fully, as it is treading so closely upon unknown ground—namely, the connexion
between matter and ether—that our hypotheses are to a great extent merely
conveniences. ' ,

Another question is the extent to which y affects ordinary reflection from a power-
fully magnetic substance like iron. I have never come across any experiment tending
to show that the reflection from iron was at all peculiar. This may be owing to the
electrostatic inductive capacity being a characteristic of the ether in the matter, while
magnetic inductive capacity is a characteristic of the matter, and so only affects the

MDCCCLXXX. 1 v
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wave propagation in a secondary degree—i.e., only to the extent to which ether motions
are transformed into currents in or motions of the matter. The same applies to the
opacity of the medium, which is similarly due to an exchange of energy between the
ether and the matter. The function Professor MAXWELL assumes to represent the
effect of magnetisation on wave-propagation is an expression of the same hypothesis.
In comparing my equations with Mr. KEerr’s results I shall consequently assume
x=1.

Mr. Kerr’s most elaborate experiments have been made with the lines of magnetic
force in the intersection of the surface of the medium and the plane of incidence,* and
I shall confine my attention to this case. My equations give that the principal effect
of reflection is to introduce a component perpendicular to the original plane of polari-
sation whose amplitude is represented by the equation

2my  sin 27 sin?¢ cosr

==

T sin® (¢+7).cos (1—7)

when the amplitude of the incident vibration is unity.

The following table represents the values of the variable part of this for the several
incidences mentioned by Mr. KErr in his paper. This table is calculated on the
assumption that 75° is the polarising angle for iron.

|
i= ) ‘ 0 | 30° 45° 60° 65° 75° | 80° 85° i900

|

|

|

sin 2i sin* i cos 7 0 | 6272 | 8646 | 1:0007 | 1:0058 | "9000 | 7554 ‘ 4904 |

sin? (4+7).cos (i—r)

This table shows that the intensity of this introduced component vanishes for the
two limiting incidences 0° and 90°, and attains a maximum value of 1'0067 at about
63° 20", On comparing this with Mr. KERR’s results there is a most striking corre-
spondence. Summing up the results of his paper on reflection from a surface which is
magnetised so that the lines of force are in the surface and the plane of incidence
(¢ Phil. Mag.,” March, 1878, § 23), he says: “ When the vibration reflected from the
unmagnetised mirror is either parallel or perpendicular to the plane of reflection, the
effect of magnetisation is to introduce a new and very small component vibration in a
direction perpendicular to the primitive vibration.” This is what I have called c. He
goes on to define its direction relatively to the Amperean currents which are supposed
to produce the magnetic force ; but as the sign of ¢ depends on the sign of », and thus
on that of C, which cannot be certainly determined for iron otherwise than by these
very experiments, any confirmation founded upon it such as I mentioned in my former
paper is to a certain extent illusory ; but the same arguments as are there used would

% ¢ Phil. Mag.,” March, 1878.
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lead to the same conclusion here—namely, that iron, if transparent, would behave like
those ferromagnetic substances observed by VxrpET, which rotate the plane of
polarisation in the opposite direction to the Amperean currents, as is of course most
probable. He further mentions, in § 24, that the phase of this component is always
nearly the same as that of the component of the reflected ray polarised in the plane of
incidence. This question, however, of difference of phase is one I am not at present
prepared to explain, and, as I have mentioned already, must await a more compre-
hensive theory. Considering next the intensity, of course no very accurate measures
were possible on account of the minuteness of the phenomenon ; but he several times
remarks that all effects of magnetisation vanished at normal and grazing instances,
‘while his maximum effects were always obtained at incidences of about 60° or 65°
The anomalies observed connected with the incidence 75° all belong to the question of
the difference of phase between the components, which my investigation does mnot
touch. On the whole then I think that my results, as far as they go, are in complete
accordance with Mr. KERR’S experiments.

This investigation is put forward as a confirmation of Professor MAXWELL'S
electromagnetic theory of light, in which, though there are some points requiring
further investigation, nevertheless the foundation has certainly been laid of a very
great addition to our knowledge, and if it induced us to emancipate our minds from
the thraldom of a material ether might possibly lead to most important results in the
theoretic explanation of nature.
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